High-Performance Ball Nose Finishing Mills and Inserts

First in Industry Ball Nose Replacement Program See inside cover for details

DAPRA CORPORATION www.dapra.com

Ball Nose, Flat Bottom and Back Draft Automatic Cutter Replacement Program

With the purchase of Dapra Ball Nose, Flat Bottom, Back Draft and High-Feed Inserts, receive FREE or discounted replacement Ball Nose, Back Draft and Flat Bottom Cutters!*

Insert Ordering Information Insert Grade Selection Cutter Body Ordering Information Screw-on Heads & Modular Extensions Spare Parts & Tools

Index

3-5	Application Information	13
5	Feed, Speed & Diameter Compensation	14
6-9, 12	Troubleshooting Information	15
10-11	Anti-Seize Grease Application	15
12	Recommended Cutting Speeds	16

Three Steps to Quick & Easy Ordering

Step One: Choose Your Inserts

Step Three: Choose Your Cutter Body

With three quick steps and plenty of insert and cutter choices, Dapra makes it easy to find exactly what you need and get your cutting tools on time.

Step One: Choose Your Inserts

HBN Series – Helical Cutting Edge Ball Nose Inserts*

Improved Tip Geometry for Better Surface Finishes and Longer Tool Life

Optimize performance in all Ball Nose applications:

- Smoother cutting action
- Reduced chatter
- Cleaner surface finish
- Reduced stress on work materials
- Reduced tool pressure and heat
- Longer tool life

DØ	Helical		Metric			
Diameter	(HBN)	10mm	HBN-10MM			
³ /8"	HBN-0375	12mm	HBN-12MM			
1/2"	HBN-0500	16mm	HBN-16MM			
⁵ /8"	HBN-0625	20mm	HBN-20MM			
3/4"	HBN-0750	25mm	HBN-25MM			
1"	HBN-1000	30mm	HBN-30MM			
1 ¹ /4"	HBN-1250	32mm	HBN-32MM			

* For insert grades and coatings, see chart on page 5.

Refer to back cover for speed recommendations by material. More insert options follow on page 4.

Step One: Choose Your Inserts

DØ

Diameter

Dia

³/4"

1"

Standard Ball Nose Inserts

D Ø Diameter	Without Chipbreaker	D Ø Diameter	Chipbreaker
³ /8"	BNR-0375-N	⁵ /16"	BNR-0312-CB
1/2"	BNR-0500-N	³ /8"	BNR-0375-CB
⁵ /8"	BNR-0625-N	1/2"	BNR-0500-CB
³ /4"	BNR-0750-N	⁵ /8"	BNR-0625-CB
1"	BNR-1000-N	3/4"	BNR-0750-CB
1 ¹ /4"	BNR-1250-N	1"	BNR-1000-CB
		1 ¹ /4"	BNR-1250-CB

Metric	Without Chipbreaker	Met	ric Chipbreaker
10mm	BNR-10MM-N	8mm	BNR-08MM-CB
12mm	BNR-12MM-N	10mm	BNR-10MM-CB
16mm	BNR-16MM-N	12mm	BNR-12MM-CB
20mm	BNR-20MM-N	16mm	BNR-16MM-CB
25mm	BNR-25MM-N	20mm	BNR-20MM-CB
30mm	BNR-30MM-N [†]	25mm	BNR-25MM-CB
32mm	BNR-32MM-N	32mm	BNB-32MM-CB

† Use BNEM 1250 cutter body and size 32 insert screws.

0

BDR-N

IEW	C PCD-Tipped E	BNR Inserts
DØ ameter	Without Chipbreaker	
³ /8"	BNR-0375-N-PCD	
1/2"	BNR-0500-N-PCD	

BNR-0750-N-PCD

BNR-1000-N-PCD

Back Draft (BDR) Inserts (back draft angle: 4° per side)

D Ø Diameter	ØWithoutChipbreakereterChipbreaker		Corr 1/32	1/16	dius
³ /8"	BDR-0375-N		1	1	
1/2"	BDR-0500-N	BDR-0500-CB	\checkmark	1	🖌 (CB
⁵ /8"	BDR-0625-N	BDR-0625-CB	1	1	
³ /4"	BDR-0750-N	BDR-0750-CB	1	1	🖌 (CB
1"	BDR-1000-N	BDR-1000-CB	1	1	1

BDR-PCD

PCD-Tipped BDR Inserts**

DØ	Without	Corner	Radius
Diameter	Chipbreaker	1/32	¹ /16
³ /8"	BDR-0375-N-PCD	\	
1/2"	BDR-0500-N-PCD	\	\checkmark
3/4"	BDR-0750-N-PCD	√	1

**Note: DOC of PCD-Tipped Inserts is .125"

Flat Bottom (FBR) Inserts

FBR-N	D Ø Diameter	Without Chipbreaker	Chipbreaker	Corne 1/32	r Radius
	³ /8"	FBR-0375-N		1	
	1/2"	FBR-0500-N	FBR-0500-CB	\checkmark	\checkmark
0/	⁵ /8"	FBR-0625-N	FBR-0625-CB	\checkmark	\checkmark
	3/4"	FBR-0750-N	FBR-0750-CB	\checkmark	\checkmark
FBR-CB	1"	FBR-1000-N	FBR-1000-CB	\checkmark	\checkmark

Step One: Choose Your Inserts

HFBD Series – High-Feed Inserts

Ultimate roughing capability for smaller-diameter applications:

- 3/8" to 1" diameter
- Use for cavity/core roughing, pocketing, detail area roughing and helical interpolation
- Must be run with a BNEM cutter body (will not fit BDEM cutters)

DØ Dia.	Insert	Uses Cutter	Program Radius	Corner Radius	FPT*	Max. DOC
³ /8"	HFBD-0375	BNEM0375 / GWR10**	.0295"	.020"	.010020	.013"
1/2"	HFBD-0500	BNEM0500 / GWR12**	.0558"	.034"	.012025	.020"
⁵ /8"	HFBD-0625	BNEM0625 / GWR16**	.0766"	.048"	.012030	.025"
³ /4"	HFBD-0750	BNEM0750 / GWR20**	.0852"	.062"	.012040	.028"
1"	HFBD-1000	BNEM1000 / GWR25**	.1104"	.076"	.012040	.033"

* FPT is already adjusted for high-feed chip thinning. Use the actual FPT shown here to calculate the feed in IPM (inches per minute).

** MOD, Undersized Cutters or Metric.

** DAPRA recommends a maximum 1° ramp angle on these inserts.

Step Two: Choose Your Insert Grade

Ball Nose, Back Draft, Flat Bottom and High-Feed Insert Grades

Uncoated (Base Grade)	with Coating	Description	Specifications
F1		Micro-grain tungsten carbide with high edge strength and good toughness. Good for machining steels, stainless steels, high-temperature alloys, cast iron and nonferrous materials.	(C-2), (K10)
	FPX	Titanium carbon nitride (TiCN) is a functional hard coating offering an optimal combination of hardness, toughness and antifriction characteristics. TiCN is recommended for high shock resistance. Excellent titanium grade.	3000 HV, 750° F, .4 Co
	FPO	High-performance, medium-temperature grade. Optimum performance and wear resistance in most soft steels, soft stainless steels and cast irons.	3200 HV, 1850° F, .4 Co
	FPA	Aluminum titanium nitride (AITiN) is recommended when extra hardness and heat resistance are required. AITiN makes both machining at higher speeds and dry machining possible.	3600 HV, 2000° F, .4 Co
	FP-GLH	Premium high-temperature grade. Unbeatable performance and wear resistance in high-heat applications such as harder steels, tough stainless steels and high-temperature alloys.	3600 HV, 2000° F, .2 Co
	FPD	CVD-applied PCD (diamond) coating. Excellent wear resistance in nonmetallic materials such as graphite, epoxy-based resins and plastics.	CVD Diamond Coating
	PCD	Only available in BNR-N and BDR-N inserts. Premium diamond-tipped grade for carbon or light aluminum milling. Use in dedicated holder for the optimum in wear resistance, up to 100 times standard PVD-coated inserts.	Brazed-On Diamond Tips

• "FP-GLH" and "FPA" coatings are best suited for higher operating speeds (temperatures) and harder materials.

• "FPO" and "FPX" coatings are best suited for low to medium operating speeds (temperatures) and softer materials.

• Other coatings available on request. Contact Dapra for details.

STANDARD SHANK

Tools starting with "SE" are short effective-reach cutters, designed for optimum strength and limited clearance

Part Number	Cutting Dia.	A Ø	B Straight Length	C Taper End Ø	D Shank Ø	E Effective Length	T Taper Angle	L Overall Length
BNEM-0375-3950-SS	0.375"	0.335"	0.625"	0.365"	0.375"	1.500"	0.516°	3.950"
BNEM-0500-3500-SS	0.500"	0.413"	0.750"	0.490"	0.500"	1.250"	4.400°	3.500"
BNEM-0500-5250-SS	0.500"	0.413"	0.750"	0.490"	0.500"	2.000"	1.775°	5.250"
BNEM-0500-6000-SS	0.500"	0.413"	0.750"	0.490"	0.500"	2.500"	1.000°	6.000"
SE-BNEM-0500-7000-SS	0.500"	0.413"	0.750"	0.490"	0.500"	1.210"	4.400°	7.000"
BNEM-0625-5500-SS	0.625"	0.547"	0.750"	0.615"	0.625"	1.380"	3.090°	5.500"
BNEM-0625-6250-SS	0.625"	0.547"	0.750"	0.615"	0.625"	2.500"	1.088°	6.250"
SE-BNEM-0625-7000-SS	0.625"	0.547"	0.750"	0.615"	0.625"	1.340"	3.100°	7.000"
BNEM-0750-4500-SS	0.750"	0.670"	1.000"	0.740"	0.750"	1.750"	2.690°	4.500"
BNEM-0750-7000-SS	0.750"	0.670"	1.000"	0.740"	0.750"	3.000"	1.030°	7.000"
BNEM-0750-8250-SS	0.750"	0.670"	1.000"	0.740"	0.750"	4.500"	0.573°	8.250"
SE-BNEM-0750-9000-SS	0.750"	0.670"	1.000"	0.740"	0.750"	1.710"	2.700°	9.000"
BNEM-1000-6250-SS	1.000"	0.860"	1.500"	0.990"	1.000"	2.000"	7.400°	6.250"
BNEM-1000-7500-SS	1.000"	0.860"	1.500"	0.990"	1.000"	3.750"	1.660°	7.500"
BNEM-1000-9000-SS	1.000"	0.860"	1.500"	0.990"	1.000"	5.000"	1.088°	9.000"
SE-BNEM-1000-10000-SS	1.000"	0.860"	1.500"	0.990"	1.000"	1.940"	7.400°	10.000"
BNEM-1250-7000-SS	1.250"	1.070"	1.750"	1.240"	1.250"	2.500"	6.447°	7.000"
BNEM-1250-9000-SS	1.250"	1.070"	1.750"	1.240"	1.250"	4.500"	1.775°	9.000"

Ball Nose End Mills – Standard Shank

Achieve Higher Performance with Carbide Core Cutter Bodies!

Optimize performance with Carbide Core tooling: • reduced deflection • increased stiffness • less chatter

Carbide Core Ball Nose End Mills – Standard Shank Part Number Cutting Dia. в С D Е Т L A Ø Straight Taper Shank Effective Taper Overall Length End Ø ø Length Angle Length CC-BNEM-0750-7000-SS 0.740" 0.750" 0.670" 1.000" 0.750" 3.000" 1.031° 7.000" CC-BNEM-0750-8250-SS 0.750" 0.670" 1.000" 0.740" 0.750" 4.500" 0.573° 8.250" 0.860" 1.000" 0.990" 2.000" 6.250" CC-BNEM-1000-6250-SS 1.500" 1.000" 7.400° 1.000" 0.860" 0.990" 1.000" 3.750" 7.500" CC-BNEM-1000-7500-SS 1.500" 1.661° CC-BNEM-1000-9000-SS 1.000" 0.860" 1.500" 0.990" 1.000" 5.000" 1.088° 9.000" 1.070" 2.500" 6.447° 7.000" CC-BNEM-1250-7000-SS 1.250" 1.750" 1.240" 1.250" CC-BNEM-1250-9000-SS 1.250" 1.070" 1.750" 1.240" 1.250" 4.500" 9.000" 1.775°

OVERSIZED SHANK

Tools starting with "SE" are short effective-reach cutters, designed for optimum strength and limited clearance

Dan Nose Enu Mins – Oversized Shank									
Part Number	Cutting Dia.	A Ø	B Straight Length	C Taper End Ø	D Shank Ø	E Effective Length	T Taper Angle	L Overall Length	
BNEM-0313-5500-OS	0.313"	0.280"	0.625"	0.415"	0.500"	1.910"	3.000°	5.500"	
BNEM-0375-3500-OS	0.375"	0.335"	0.625"	0.365"	0.500"	1.340"	1.200°	3.500"	
BNEM-0375-6000-OS	0.375"	0.335"	0.625"	0.365"	0.500"	1.880"	0.688°	6.000"	
SE-BNEM-0375-6000-OS	0.375"	Tapered	n/a	n/a	0.500"	1.380"	3.000°	5.880"	
BNEM-0500-6000-OS	0.500"	0.414"	0.750"	0.490"	0.625"	2.500"	1.260°	6.000"	
SE-BNEM-0500-6000-OS	0.500"	Tapered	n/a	n/a	0.625"	2.310"	3.000°	6.000"	
BNEM-0625-7000-OS	0.625"	0.547"	0.750"	0.615"	0.750"	3.130"	0.802°	7.000"	
BNEM-0750-7500-OS	0.750"	0.670"	1.000"	0.740"	1.000"	3.500"	0.802°	7.500"	
BNEM-0750-9500-OS	0.750"	0.670"	1.000"	0.740"	1.000"	4.500"	0.573°	9.500"	
SE-BNEM-0750-9500-OS	0.750"	Tapered	n/a	n/a	1.000"	3.000"	3.000°	9.440"	
BNEM-1000-8250-OS	1.000"	0.860"	1.500"	0.990"	1.250"	4.500"	1.260°	8.250"	
SE-BNEM-1000-9500-OS	1.000"	Tapered	n/a	n/a	1.250"	3.880"	3.000°	9.440"	
BNEM-1000-10000-OS	1.000"	0.860"	1.500"	0.990"	1.250"	4.500"	0.022°	10.000"	

Ball Nose End Mills – Oversized Shank

Achieve Higher Performance with Carbide Core Cutter Bodies!

Optimize performance with Carbide Core tooling: • reduced deflection • increased stiffness • less chatter

Carbide Core Ball Nose End Mills – Oversized Shank											
Part Number	Cutting Dia.	A Ø	B Straight Length	C Taper End Ø	D Shank Ø	E Effective Length	T Taper Angle	L Overall Length			
CC-BNEM-0750-9500-OS	0.750"	0.670"	1.000"	0.740"	1.000"	4.500"	0.573°	9.500"			
CC-BNEM-1000-8250-OS	1.000"	0.860"	1.500"	0.990"	1.250"	4.500"	1.260°	8.250"			
CC-BNEM-1000-12000-OS	1.000"	0.860"	1.500"	0.990"	1.250"	6.500"	0.750°	12.000"			
CC-BNEM-1250-11000-OS	1.250"	1.070"	1.750"	1.240"	1.500"	7.500"	0.859°	11.000"			

More cutter options follow on page 8.

SOLID CARBIDE

Achieve Maximum Performance with Solid Carbide Cutter Bodies!

Optimize performance with Carbide Shank tooling: • reduced deflection • increased stiffness • less chatter • heat shrink toolholding capability (Ball Nose with Solid Carbide Shank only)

* Keep brazed joint a minimum of 2" away from heat shrink toolholder. SC (Solid Carbide Shank) tooling is suitable for FINISHING APPLICATIONS ONLY. SC tooling is NOT suitable for roughing and applications with significant heat.

Solid Ca	Sond Carbide Ban Nose End Mills – Standard Sharik												
Part Number	Cutting Dia.	A Ø	B Straight Length	C Taper End Ø	D Shank Ø	E Effective Length	T Taper Angle	L Overall Length					
SC-BNEM-0375-3950-SS	0.375"	0.335"	0.625"	0.365"	0.375"	1.500"	0.516°	3.950"					
SC-BNEM-0375-3950-OS	0.375"	0.335"	0.750"	0.360"	0.500"	1.375"	0.120°	3.950"					
SC-BNEM-0375-7000-SS	0.375"	0.335"	0.625"	0.365"	0.375"	3.000"	0.172°	7.000"					
SE-SC-BNEM-0375-7000-SS	0.375"	0.335"	0.500"	0.365"	0.375"	1.250"	0.500°	7.000"					
SC-BNEM-0500-3950-SS	0.500"	0.413"	0.750"	0.490"	0.500"	1.500"	2.920°	3.950"					
SC-BNEM-0500-7000-SS	0.500"	0.413"	0.750"	0.490"	0.500"	4.000"	0.688°	7.000"					
SC-BNEM-0500-7000-12MM-SS	0.500"	0.413"	0.500"	0.490"	12mm	1.450"	1.500°	7.000"					
SC-BNEM-0625-7000-SS	0.625"	0.547"	0.750"	0.615"	0.625"	4.000"	0.500°	7.000"					
SC-BNEM-0750-7500-SS	0.750"	0.670"	1.000"	0.740"	0.750"	2.250"	1.600°	7.500"					
SC-BNEM-0750-10000-SS	0.750"	0.670"	1.000"	0.740"	0.750"	6.000"	0.400°	10.000"					
SC-BNEM-0750-10000-18MM-SS	0.750"	0.670"	1.000"	0.740"	18mm	2.250"	1.600°	10.000"					
SC-BNEM-1000-7500-SS	1.000"	0.860"	1.500"	0.990"	1.000"	3.000"	2.500°	7.500"					
SC-BNEM-1000-10000-SS	1.000"	0.860"	1.500"	0.990"	1.000"	7.000"	0.670°	10.000"					
SC-BNEM-1000-10000-25MM-SS	1.000"	0.860"	1.500"	0.990"	25mm	3.000"	2.500°	10.000"					

See page 5 for available insert grades.

UNDERSIZED SHANK

Save time and money by using Dapra's Undersized Shank Holders...

They give you INSTANT CLEARANCE!

D Ø Diameter	Holder E Effective Length Ov		L Overall Length	S Shank Diameter	DN Neck Diameter	Insert Screw							
1/2" or 12mm	US-GWR12-150-11MM-RZ	0.98"	5.91"	11mm	0.41"	GWS 12							
1/2" or 12mm	BNEM-0500-7000-12MM-SS	full	7.00"	12mm	0.41"	GWS 12							
5/8" or 16mm	US-GWR16-180-15MM-RZ	2.05"	7.09"	15mm	0.57"	GWS 16							
3/4" or 20mm	US-GWR20-230-18MM-RZ	2.56"	9.06"	18mm	0.71"	GWS 20							
3/4" or 20mm	BNEM-0750-10000-18MM-SS	full	10.00"	18mm	0.67"	GWS 20							
1" or 25mm	US-GWR25-250-24MM-RZ	2.76"	9.84"	24mm	0.89"	GWS 25							
1" or 25mm	BNEM-1000-10000-25MM-SS	full	10.00"	25mm	0.86"	GWS 25							

Undersized Shank GWR Cutters

*Note: Tool neck diameter is exaggerated to show clearance available with undersized shank cutters.

BACK DRAFT & FLAT BOTTOM

For use with BDR and FBR inserts only.

Back Draft and Flat Bottom Cutters

Part Number	Cutting Dia.	A Ø	B Straight Length	C Taper End Ø	D Shank Ø	E Effective Length	T Taper Angle	L Overall Length
BDEM-0375-5250	-OS 0.375"	0.335"	0.625"	0.365"	0.500"	1.125"	1.700°	5.250"
BDEM-0500-6000-	-SS 0.500"	0.413"	0.750"	0.490"	0.500"	1.500"	2.900°	6.000"
Carbide Shank ➤ SC-BDEM-0500-3	950-SS 0.500"	0.413"	0.750"	0.490"	0.500"	1.500"	2.920°	3.950"
Carbide Shank ➤ SC-BDEM-0500-7	000-SS 0.500"	0.413"	0.750"	0.490"	0.500"	4.000"	0.688°	7.000"
Carbide Shank ➤ SC-BDEM-0625-7	000-SS 0.625"	0.547"	0.750"	0.615"	0.625"	2.050"	1.500°	7.000"
BDEM-0625-7000	-SS 0.625"	0.547"	0.750"	0.615"	0.625"	1.875"	1.700°	7.000"
BDEM-0750-9000-	-SS 0.750"	0.670"	1.000"	0.740"	0.750"	2.250"	1.600°	9.000"
BDEM-1000-1000	0-SS 1.000"	0.860"	1.500"	0.990"	1.000"	3.000"	2.500°	10.000"

CARBIDE CORE MODULAR EXTENSIONS

Dapra's Carbide Core Modular Extensions Are Ideal for Standard Inch End Mill Holders

- Cylindrical inch shanks, providing adaptation for end mill holders, milling chucks and heat-shrink holders
- 3 sizes to accommodate modular head sizes from $^{3}\!/_{4}$ to $1^{1}\!/_{2}$
- Carbide core for enhanced vibration dampening capability; reduced deflection and improved rigidity
- Optional add-on extensions for additional 2" reach screw on to base extensions (for ³/₄" to 1¹/₂" modular heads)
- Thru-coolant for delivery of air or coolant right at the cutting edge

Carbide Core Modular Extensions

For Head Dia.	Extension Part No.	Shank Dia.	Effective Length	OAL	Thread	сс	А
.750"	CC-ME-0750-3500 WOF	1.000"	3.7"	6.0"	M10	7/16" x 4.0"	.660
1.000"	CC-ME-1000-4500 WOF	1.000"	4.7"	7.0"	M12	7/16" x 5.0"	.935
1.250"/1.500"	CC-ME-1250-5500 WOF	1.250"	5.7"	8.0"	M16	1/2" x 6.0"	1.175

1

2" Add-On Extensions

For Head Dia.	Extension Part No.	Effective Length	Thread
.750"	ME-0750-2" EXTENSION ADAPTER	2.0"	M10
1.000"	ME-1000-2" EXTENSION ADAPTER	2.0"	M12
250"/1.500"	ME-1250-2" EXTENSION ADAPTER	2.0"	M16

SCREW-ON MODULAR HEADS & EXTENSIONS

Dapra's Screw-On Heads Fit Industry Standard Cutting Systems

- Close-tolerance mounting of heads minimizes runout and maximizes rigidity
- Provide significantly more effective reach than solid end mills
- · Use standard inch wrench flats, no special metric wrenches needed

M (MOUNTING THREAD)

Dia.	Holder	М	Е	Flutes	Wrench
.500"/12mm	GWR12-MOD-C	M8*	1.05"	2	3/8"
.625"/16mm	GWR16-MOD	M8*	1.11"	2	7/16"
.750"/20mm	GWR20-MOD-C	M10	1.28"	2	9/16"
1.000"/25mm	GWR25-MOD-C	M12	1.65"	2	11/16"
1.250"/32mm	GWR32-MOD-C	M16	1.78"	2	15/16"

Ball Nose Screw-On Heads

* M8 modular extensions not available. Use ISO standard bars. "C" denotes thru-tool coolant.

HEAVY-METAL DOUBLE-ENDED MODULAR EXTENSIONS

- Machined on both ends; can be cut in half and used with two different modular heads
- Metric shank diameter provides clearance for each inch size modular head
- Thru-coolant equipped

Using modular extensions at full length is not generally recommended. Use for very light cutting at significantly reduced speeds and feeds only.

Modular Extensions

Modular Head Dia.	Part No.	OAL	М	S
.750"/20mm	ME-0750-18MM-900-C	9"	M10	18mm
1.000"/25mm	ME-1000-25MM-1100-C	11"	M12	25mm
1.250"/1.500"	ME-125/150-25MM-1200-C	12"	M16	25mm

Heavy Metal Modular Extensions feature a cylindrical shank, with no Weldon Flats. Hold with high-performance metric milling chucks or heat/mechanical shrink holders, or mill Weldon Flats and use a short-length solid end mill holder.

More cutter options follow on page 12.

METRIC – STEEL & CARBIDE

Tapered Metric Holder

Straight Metric Holder

DØ Diameter	Holder	E Effective Length	L Overall Length	S Shank Diameter	DN Neck Diameter	Insert Screw			
8 mm	GWR08-100-10-RZK	25mm	100mm	10mm	7mm	GWS 08			
Straight Solid Metric									
10mm	GWR10-130-10-RZ	25mm	130mm	10mm	9mm	GWS 10			
12mm	GWR12-150-12-RZ	47mm	150mm	12mm	10.5mm	GWS 12			
12mm	SC-BNEM-0500-7000-12MM-SS	38mm	180mm	12mm (CARBIDE)	10.5mm	GWS 12			
16mm	GWR16-180-16-RZ	52mm	180mm	16mm	14.5mm	GWS 16			
20mm	SC-BNEM-0750-10000-18MM-SS	57mm	250mm	18mm (CARBIDE)	17mm	GWS 18			
20mm	GWR20-230-20-RZ	65mm	230mm	20mm	18mm	GWS 20			
25mm	SC-BNEM-1000-10000-25MM-SS	76mm	250mm	25mm (CARBIDE)	22mm	GWS 25			
32mm	GWR32-250-32-RZ	70mm	250mm	32mm	27.5mm	GWS 32			

*Note: All Dapra Ball Nose end mills accept either inch or metric inserts of like sizes. Example: BNEM0750 and GWR20 accept either a 3/4" or 20mm diameter insert. BNEM0500 and GWR12 accept either a 1/2" or 12mm diameter insert.

Spare Parts & Tools

Insert Screw	Inser Inch	t Size Metric	Dia.	Major Dia.	Pitch	Wrenches Torx®	Torque Nm/in.lbs.
GWS 08	.312	8	3mm	3mm	.5mm	T8F	Manual
GWS 10	.375	10	4mm	4mm	.5mm	T15-T	Manual
GWS 12	.500	12	5mm	5mm	.5mm	T20-T	6.0/53
GWS 16	.625	16	5mm	5mm	.5mm	T20-T	6.2/55
GWS 20	.750	20	5mm	5mm	.5mm	T20-T	6.2/55
GWS 25	1.000	25	6mm	6mm	.75mm	T30-T	6.5/58
GWS 32	1.250	30/32	8mm	8mm	.75mm	T30-T	6.5/58

TORX[®] is a registered trademark of Camcar/Textron.

NOTE: New cutter bodies may require additional torque to fully seat the inserts. Once new cutter pockets are "broken in," the recommended torque specs in the chart can be followed regularly.

* T10-T wrenches available for older-style insert screws.

Application Information

Technical Considerations

- Always use anti-seize compound on threads and screw body.
- Thoroughly clean pocket and screw at each insert change.
- Change insert screw every 10 inserts.
- Use high quality tool holders for rigidity and concentricity: milling chucks, heat-shrink and mechanical shrink holders are recommended; collets and end mill holders are not recommended.
- Cutter bodies will wear and fatigue over time; inspect tool before each use.

Recommendations

- Maximum Depth of Cut (DOC) for ball nose should be less than or equal to 10% of ball diameter.
- Stepover should be greater than or equal to DOC.
- Ball nose tools are not designed for roughing. Use high-speed machining techniques (light DOC and high feed rates) for stable and fast cuts where greater metal removal is required.
- Climb milling is preferred.
- When plunging with Ball Nose, use pecking cycle with a maximum of .002" FPT; maximum recommended depth is 30% of ball diameter.
- Back Draft and Flat Bottom Inserts are not designed for plunging; ramp in at a maximum angle of 2°.
- Compensate for Effective Cutting Diameter (see Table 1 and Fig. 1 on p. 14).
- Compensate for chip thinning with Feed Rate Adjustment (see Table 2 on p. 14).
- Surface finish (RMS) is a function of stepover and feed per tooth.
- Try to work within recommended surface footage and chip loads.
- Decrease feed rate coming into corners to reduce chatter.
- For long-reach applications, utilize the Carbide Shank/Carbide Core cutting tools for increased rigidity and reduced chatter.

DISCLAIMER: Modern metal cutting techniques involve the potential use of very high operating parameters (speeds, feeds, depths of cut, etc.). This creates the potential for flying chips and debris, and can also create tool breakage due to a variety of causes. As such, any metal cutting operation should be executed in a completely enclosed (shielded) environment to protect against injury from flying objects. Dapra does not assume responsibility for any loss, damage or expense incurred in any use or handling of our product after purchase. Grinding produces hazardous dust. To avoid adverse health effects, use adequate ventilation and read material safety data sheet first. This product contains a chemical known to the state of California to cause cancer.

Feed, Speed & Diameter Compensation

Table 1: Effective Cutting Diameter (ECD) Death of Cut (DOC)

Depth of Cut (DOC)

		.005	.010	.015	.025	.035	.050	.100	.125	.150	.200	.250
е	.250	.070	.098	.119	.150	.173	.200	.245	.250			
et	.375	.086	.121	.147	.187	.218	.255	.332	.354	.367	.374	
am	.500	.099	.140	.171	.218	.255	.300	.400	.433	.458	.490	.500
ö	.625	.111	.157	.191	.245	.287	.339	.458	.500	.534	.583	.612
t	.750	.122	.172	.210	.269	.316	.374	.510	.559	.600	.663	.707
Se	1.000	.141	.199	.243	.312	.368	.436	.600	.661	.714	.800	.866
Ê	1.250	.158	.223	.272	.350	.412	.490	.678	.750	.812	.917	1.000

- 1. Select diameter of tool to be used.
- 2. Determine Depth of Cut (DOC) to be used.
- 3. Refer to Figure 1 and Table 1 to find the Effective Cutting Diameter (ECD).
- Refer to Feed and Speed chart on back cover to select the surface footage to be used (SFM).
- 5. Calculate **RPM** using the **ECD** and **SFM**. (**SFM** x 3.82 / **ECD** = **RPM**)
- 6. Refer to Table 2 to determine Feed Rate Adjustment (FRA).
- Refer to chart on back cover to select Feed per Tooth (FPT). Calculate Inches per Minute (IPM). (RPM x FPT x FRA = IPM)

Figure 1

Table 2: Feed Rate Adjustment (FRA) Insert Diameter

					i i				
		¹ /4"	⁵ /16"	³ /8"	¹ /2"	⁵ /8"	³ /4"	1"	1 ¹ /4"
	.005	3.6	4.0	4.4	5.0	5.6	6.1	7.1	7.9
	.010	2.6	2.8	3.1	3.6	4.0	4.4	5.0	5.6
	.015	2.1	2.3	2.6	2.9	3.3	3.6	4.1	4.6
	.020	1.8	2.0	2.2	2.6	2.8	3.1	3.6	4.0
ົບ	.025	1.7	1.8	2.0	2.3	2.6	2.8	3.2	3.6
Q	.050	1.2	1.4	1.5	1.7	1.8	2.0	2.3	2.6
L L	.075	1.1	1.2	1.2	1.4	1.5	1.7	1.9	2.1
Ţ	.100		1.1	1.1	1.2	1.4	1.5	1.7	1.8
Ê.	.125			1.1	1.2	1.3	1.3	1.5	1.7
0	.150				1.1	1.2	1.3	1.4	1.5
f	.175					1.1	1.2	1.3	1.4
e de	.200						1.1	1.3	1.4
	.250							1.2	1.2
	.300							1.1	1.2
	.400								1.1

Use multiple above to calculate adjusted feed rate.

For optimum speed and feed calculation assistance, visit our mobile website: **17/41917/A mobile.com**

DapraMobile.com lets you conveniently obtain information about Dapra's extensive line of highperformance cutting tools.

DapraMobile.com includes full product specifications, including tool dimensions, insert coatings and grades, recommended cutting speeds and more. You can also access speed & feed calculators to keep critical milling data at your fingertips. Troubleshooting guides are also included to provide solutions to several common milling issues.

Troubleshooting

Concern	Possible Cause	Solutions				
Insert wear at tip	Not enough chip load	 Verify correct speed and feed Increase feed rate Decrease RPM Increase DOC 				
Insert wear appears high (flank wear)	 Not enough chip load Surface footage is high Incorrect grade or coating 	 Verify correct speed and feed Increase feed rate Decrease RPM Consider different insert 				
Insert chipping	 Surface footage is low Incorrect grade or coating Using CB style insert incorrectly Feed too high 	 Verify correct speed and feed Increase spindle speed Decrease feed rate Change insert selection Decrease DOC Use N style insert 				
Built-up edge on insert	 Low surface footage Light chip load (feed per tooth) Incorrect coating 	 Verify correct speed and feed Increase cutting speed Increase feed rate Select different coating 				
Poor finish/chatter	 Cutter hung out too far Excessive runout 	 Use Carbide Core cutter body Reduce tool gage length Check tool holder wear 				
Tool shank breaks	 Tool pressure too great Fatigued cutter body 	 Decrease DOC Reduce tool gage length Decrease feed rate 				

How to Apply Anti-Seize to Ball Nose Insert Screws

- 1. Anti-seize must be applied before using tool for first time.
- 2. Remove screw from cutter body.
- 3. Generously apply anti-seize to *entire length* of screw body, not to just the threads (see diagram).
- 4. Clean out insert pocket before assembly of insert/screw combination.
- 5. Place insert into cutter-body pocket.
- 6. Place screw with applied anti-seize into position in cutter body.
- While gently pushing on the end of the TORX[®] screwdriver/ wrench, begin tightening the screw (may turn with slight resistance in order to pull insert tight into the pocket).
- 8. Tighten screw to snug fit, taking care not to overtighten. Follow torque specifications shown above.
- 9. Repeat steps 2-8 for each insert change.
- 10. Replace screw with each new box of inserts to assure maximum performance.

Generously apply anti-seize to these surfaces with each insert change.

Recommended Cutting Speeds

MATERI	AL GROUP	Example	F1 (uncoated)	FPX	FP0	FPA/ FP-GLH	PCD	Geometry	FPT
PLAIN Steels	< 3%C 3%-6%C 5%-1.5%C	1008, 1018, 12L14 1040, 1045, 1055 1060, 1070, 1095	300-600	400-1000	500-1200	800-1600	N/R	HBN, N	.002- .007
ALLOY STEELS	Mo Cr NiCrMo	4012, 4320, 4340 52100, 5120 8620, 8622, 8640		300-900	350-1100 70	700-1400	N/R		
DIE STEELS		A2, D2, P20, W2, H13, S7							
HARDENED Steels			N/R	N/R	N/R	300-700	N/R	N, HBN	.002- .005
STAINLESS STEELS	Ferritic/ Martensitic	403, 416, 430, 430F, 434, 446, \$44400	150-300	250-800	300-950	500-900	N/R	HBN, N	.002- .006
	Austenitic	304L, 303, 304, 316L		150-650	180-780	80 300-800 00 250-700	N/R	. HBN, CB	
	Precipitation Hardening (PH)	15-5PH, 17-4PH, custom, 455, PH13-8 Mo, AM355		150-500	180-600		N/R		
CAST IRON	Gray	A48 Class xx B, A436 Type 2	350-600	300-900 360-1100		500-1000	N/R	· HBN,N	.003- .007
	Malleable Ductile	A47, A220, SAE J148 60-40-18, 100-70-03, SAE J434			360-1100	400-900	N/R		
ALUMINUM Alloys		2024-T4, 6061-T6, 7075-T6	1000+	1000+	1000+	1000+	2000+	HBN, CB	.005- .010
COPPER Alloys	CuNi:refer to High- Temp. Alloys below	J463, B121, Ampco 21, Wearite 4-13	400-600	400-800	450-950	500-1000	N/R		
HIGH-TEMP. Alloys		Inconel 617, Monel K500, Waspaloy, CuNi 70-30	50-125	50-200	50-200	75-350	N/R	HBN, CB	.002- .004
TITANIUM Alloys		Ti99.9, Alpha Alloy, Ti-6Al-4V	50-125	50-200	50-200	150-450	N/R	HBN, CB	.002- .005
CARBON GRAPHITE			700-1200	700-1500	700-1500	1200+	1200+	HBN, N, PCD	.004- .010

** Best choice grades shown in bold text

Refer to the Diameter and Feed Rate Adjustment charts on page 14 for accurate RPM and IPM calculations

SPEED

Lower Speed Ranges for: Heavier cuts, harder materials, larger diameter tools Medium Speed Ranges for: Semi-finishing Higher Speed Ranges for: Lighter cuts, softer materials, smaller diameter tools

FEED

Lower Feed Ranges for: Heavier cuts, harder materials, smaller diameter tools Higher Feed Ranges for: Lighter cuts, softer materials, larger diameter tools

The parameters provided are suggested operating parameters. Actual speeds and feeds will depend on many variables, such as rigidity, workpiece hardness, tool extension, machine accuracy, Depth of Cut, etc. Start at the middle of the SFM range and the low end of the FPT range. Next, increase FPT to optimize productivity and tool life. Higher SFM will provide higher output but will reduce tool life. Try different combinations to find the parameters that best suit your needs.

Dapra Ball Nose finishing products are proudly made in the USA.

66 Granby Street, Bloomfield, CT 06002 800-243-3344 • 860-242-8539 • Fax 860-242-3017 Email info@dapra.com • www.dapra.com